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Abstract 

 This thesis examines the impact of configuration changes to the learning curve 

when implemented during production.  Prior learning curve research has studied various 

learning curve models and impacts to the learning curve when other than constant and 

stable production exists.  However, this research is one of the first empirical studies of 

the impact to the learning curve slope and touch labor hours when production is 

continuous but a configuration change interrupts the learning process.  

 This research effort analyzed one joint service and three Air Force aircraft 

programs.  The analysis discovered the learning curve slope after a configuration change 

is different from the stable learning curve slope pre-configuration change.  The 

differently configured units were found to be statistically different from one another, 

which may be due to the unstable slope, given that the labor hours per unit are partially a 

function of the learning rate.  The significant difference between the configurations 

provides statistical support that the new configuration should not be estimated with the 

learning curve equation of the prior configuration.  The research also discovered the post-

configuration slope is always steeper than the stable learning slope.  Therefore, 

estimating the new configuration based on the slope of the units pre-configuration change 

will result in over-estimation, but an initial estimate with a stable slope and no anticipated 

changes will under-estimate the production hours once a change is required.  The steeper 

slope decreased with each subsequent unit until the slope stabilized.  Possible 

explanations and implications of all analysis and results as well as suggestions for future 

research are provided.  
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An Analysis of the Impact of Configuration Changes to the Learning Curve for 

Department Of Defense Aircraft Acquisition Programs Substantially Into Production 

 
I.  Introduction 

Planes became obsolescent as they were being built.  It sometimes took five years to 
evolve a new combat airplane, and meanwhile a vacuum could not be afforded. . . . I also 
had trouble convincing people of the time it took to get the “bugs” out of all the 
airplanes.  Between the time they were designed and the time they could be flown away 
from the factory stretched several years … You can’t build an Air Force overnight. 
  - General Henry H. (“Hap”) Arnold, 1949 

General Issue 

Aircraft manufacturing has existed for nearly a century, yet many of General 

Arnold’s observations regarding aircraft procurement issues during WWI still exist today: 

a long acquisition process, a constrained fiscal environment, and configuration changes 

introduced during production.  The Budget Control Act of 2011 subjected the Department 

of Defense (DoD) to a more fiscally constrained and financially conscious environment 

than ever before, juxtaposed with a demand for new aircraft programs of almost every 

type.  As an increasing number of programs are terminated, with budget overruns as a 

contributing factor, managers at every level in the DoD are expected to ensure the 

Department’s shrinking budget is being used in the most effective way.  The increased 

scrutiny adds greater emphasis to the accuracy of program office cost estimates given that 

an approved program cost estimate supports every major aircraft acquisition program 

funded by the Department.   

A vital input to the cost estimate for a production program is the assumed learning 

curve slope for the program.  The learning rate is also a major factor in production 

contract negotiations and has a direct impact on the procurement costs and the contract 
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amount (Hall, 2001:8).  The learning curve often depicts the learning phenomenon that 

occurs in manufacturing.  Learning is defined as a constant percentage reduction of the 

required touch labor hours (or costs) to produce an individual unit as the quantity of units 

produced doubles (Yelle, 1979:302)—as the number of units produced doubles, the 

number of hours required to produce a single unit decreases by the learning curve rate.  

Learning is both the conceptual and the physical learning of a physical process (Watkins, 

2001:18).  The learning curve for a program is generally considered stable once the 

program is substantially into production because the manufacturer and laborers have 

produced enough units to learn the most efficient production process.  However, 

intuitively and through past research, it is known that learning is disrupted by changes in 

production and only the production of additional units can recover the lost learning 

(Watkins, 2001:18).  It is critical to capture the change in the learning rate due to 

production modifications to better estimate DoD program costs.  

The idea of learning in a production environment is well established.  T.P. Wright 

first published the learning curve phenomenon in early 1936.  Wright observed that in a 

manufacturing environment, as the cumulative quantity of units produced doubled, the 

cumulative average cost decreased at a constant rate (Wright, 1936:124-125; Yelle, 

1979:302).  During World War II, government contractors investigated the usefulness of 

the learning curve concept to predict labor hours and cost requirements for aircraft and 

ship construction projects.  The private sector went on to adopt the learning curve theory 

into practice shortly thereafter.  Although learning curve theory has evolved and has been 

referred to by different names in the decades following Wright’s report, including the 

experience curve, the progress curve, and the improvement curve, Wright’s model 
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remains one of the models most widely used by manufacturers to predict labor hours and 

costs (Yelle, 1979:303-304; Badiru, 192:176.).  

Although Wright’s findings postulated a constant learning environment, 

researchers have not ignored the idea that constant learning may not exist on a continual 

basis in a manufacturing environment.  In fact, the ideas of regressed and lost learning 

have been widely studied.  Research studies support that a break in production creates an 

environment of relearning because the labor resources have stopped working, at least on 

the same project, and will be less efficient at manufacturing when production restarts 

(Anderlohr, 1969:16-17).  George Anderlohr (1969) developed a method to determine the 

cost of lost learning due to production breaks; an overview of this method will be 

discussed in Chapter II.  

In addition to production breaks, instances also exist when a major configuration 

change occurs during production and disrupts the learning process.  In this situation, the 

new configuration is immediately incorporated into the next units on the production line; 

the units already produced are retrofitted a later time.  Intuitively, the units with the 

configuration change should initially have a different learning rate than the units without 

a change because the manufacturers must learn how to incorporate the change into the 

production process.  However, because the learning rate for the new configuration is 

unknown, DoD program offices generally do not treat the reconfigured units with a 

different learning rate.  As a result, the program often experiences substantially different 

hours/costs for the newly configured production units than the learning curve projected.  

A configuration change in a production program does necessitate learning for the 

contractor, and the impact to learning attributable to the configuration change should be 



4 

understood by all levels of the DoD acquisition community.  Wright (1936) understood 

this limitation to the learning curve theory application even in the infancy of the idea: 

The tremendous cost of changes introduced into a production order during 
construction is too well known to require emphasis.  This cost is involved, not 
only in shop delays, but in the engineering expense of re-designing.  It is 
appreciated that in a rapidly moving art such as aviation, changes are more or less 
inherent… In using the curve developed in this paper, it should be recognized that 
the factors derived are based on the assumption that no major changes will be 
introduced during construction.  (Wright, 1936:124) 
 

Problem Statement and Research Hypothesis 

Current DoD program office cost estimating assumes a stable rate of learning 

once a program is substantially into production.  However, intuitively, a configuration 

change introduced into the production line will initially disrupt the learning effect.  This 

study will research two main questions to address the implications when a configuration 

change occurs during production: 

1. Is there an impact to the learning curve slope when a configuration change is 

introduced to the production line?  Specifically: 

a) What is the learning curve slope for each new configuration;  

b) Are the production segments for each configuration significantly 

different; and  

c) What is the difference between the hours predicted based on the prior 

configuration and actual hours for each segment? 

2. How many units of the newly configured aircraft are produced before the 

contractor recovers the stable learning rate? 
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The first research question leads to a single testable hypothesis: 

Hypothesis 1: Is the mean amount of labor hours prior to a configuration change 

the same as the mean amount of labor hours subsequent to a production change? 

H0: Mean labor hours prior to configuration change = Mean labor hours post configuration change  
Ha: Mean labor hours prior to configuration change ≠ Mean labor hours post configuration change 
 

If the analysis results fail to reject the null hypothesis, this would indicate the data points 

come from the same population and a configuration change did not have a significant 

impact to the learning during production.  If the analysis rejects the null hypothesis, this 

would indicate the opposite, the data points representing different configurations come 

from different populations and that a configuration change did have a significant impact 

to the learning during production.  If the results support rejecting the null hypothesis, 

using the prior learning curve equation is inappropriate to predict the hours of the new 

configuration because the units come from different populations.  The second research 

question does not require a hypothesis test. 

Methodology 

Data will be collected from aircraft program offices at Wright-Patterson Air Force 

Base and analyzed to determine the change in touch labor hours or costs incurred by the 

contractor when a configuration change was introduced to the production line.  

Regression techniques will evaluate and compare the learning curve slopes for the aircraft 

units both prior and subsequent to the configuration change(s).  The regression analysis 

will also explain if the actual labor hours between the configurations are statistically 

different, implying an adjustment to the learning curve slope is necessary to account for 

the changes.  Chapter III provides an in-depth approach to the methodology.   
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Assumptions/Limitations 

This research has a broad scope and is only limited by the availability of data at 

the necessary level of detail.  This study is analyzing configuration changes, data that can 

only be obtained from aircraft program offices versus pulling data from a DoD database.  

To analyze the impact to the touch labor hours and learning curve slope after a 

configuration change occurs, the data are needed by individual aircraft unit—not just for 

the lot in its entirety.  To determine the impact based on type of configuration change, the 

data are needed by work type classification—not just for the unit at a top level.  Chapter 

III of this report contains a further description of the data requirement subtleties.   

Implications 

If the data analysis produces significant results, the final aspect of the study will 

be to determine if developing a Cost Estimating Relationship (CER) is feasible.  This 

CER would project the impact to a cost estimate for unplanned configuration changes in a 

specific program.  Such a factor/CER could empower the DoD during contract 

negotiations for aircraft lot buys.  The contractor and program office are both aware that 

configuration changes will most likely occur between awarding the initial contract and 

the delivery of the final aircraft.  Based on this empirical data, the contractor adds dollars 

to the production estimate to cover the cost of configuration changes, and the DoD is 

currently unable to assess the reasonableness of such estimates.  If a method can be 

developed, the results will improve the DoD’s ability to negotiate aircraft production 

contracts.  
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Review 

This chapter provided the rationale for analyzing the topic and outlined the 

research objectives.  Chapter II describes past and present research efforts regarding the 

concept of learning.  Chapter III details the methodology used to analyze the aircraft data.  

Chapter IV summarizes the results of the data analysis.  Chapter V provides the study 

conclusions and recommendations for further research. 
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II. Literature Review 

Introduction 

The idea of increasing efficiency while repeating a task, especially in a high 

touch-labor environment like manufacturing, has been around for decades.  In 1936, T.P. 

Wright published the first learning curve model, which evaluated the cost of aircraft, but 

manufacturers in both the public and private sectors realized this learning phenomenon 

applied to most production environments.  Since Wright’s discovery, several learning 

curve models have evolved from Wright’s original concept, but the premise behind each 

model remained the same: a production labor resource will take less time to complete a 

task the more often the laborer repeats that task without a break in work performance.  

When a disruption occurs that impedes the laborer’s ability to repeat the same task, the 

laborer’s efficiency and the learning rate are both impacted.  

The purpose of this chapter is to provide an in-depth review of current learning 

curve theories and methodologies, especially those most often used within the DoD.  This 

chapter will also examine past research in the areas of lost learning in a production break 

environment, the more contemporary learning curve research of forgetting rather than 

learning, and the less explored area of split learning curves.   

Relevant Research 

First, the relevant research begins with the genesis of the learning curve concept.  

Next, the literature review continues with the evolution of learning methodologies.  

Finally, the research overview ends with the related concepts of lost learning due to 
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production breaks, forgetting and its causes, and accounting for the addition of new work 

during manufacturing. 

Learning Curve Theory Conception   

T.P. Wright (1936) identified the learning phenomenon in a manufacturing 

environment and published the first learning curve model in the 1930s.  Wright identified 

that as production laborers repeated the same task in aircraft manufacturing, the laborers 

learned from their prior repetitions and became increasingly more efficient at the task 

(Wright, 1936:124).  Manufacturers in all industries quickly adopted the concept.  

After graphing the variation of labor cost against aircraft production quantity, 

Wright identified that the learning curve was of an exponential form, shown in Equation 

1 below.  This model, often referred to as Wright’s Learning Model, shows 

mathematically that as the cumulative production quantity doubles, the cumulative 

average production cost decreases at a constant rate. 

𝑦 = 𝑎𝑥𝑏     (1) 

Where 
y = the cumulative time or cost after producing x number of units 
a = hours required to produce the theoretical first unit 
x= cumulative unit number 
b = log R/log 2 (the learning index) 
R = learning rate 

 
 Wright used this formula to develop the 80% curve, based on the aircraft data he 

plotted.  Wright believed aircraft manufacturers would observe the 80% learning rate as 

the cumulative quantity produced doubled (Wright, 1936: 124-125).  While civilian 

aircraft assembly still has an expected learning curve slope of around 80%, learning curve 

slope values can vary across and even within industries (ICEAA Module 7, 2013:59).  
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Figure 1 depicts Wright’s 80% learning curve, based on a first unit cost of $100 

thousand.  The figure shows that as the cumulative number of units produced doubles, the 

cumulative average cost decreases by 20%.   

 

Figure 1: Example of Wright's 80% Learning Curve 

 Wright also published the log-linear form of his equation, show in Equation 2, 

which transforms the plotted data from a curved line into a straight line (still referred to 

as a learning curve) (Wright, 1936:124).  Practitioners often transform production data 

into this form, because statistical regression can then be used to plot a line that best fits 

among all of the data points when in this form.  

ln 𝑦 = ln𝑎 + 𝑏 ln 𝑥            (2) 

Figure 2 depicts the transformation of Wright’s 80% model into log-linear form.  When a 

constant learning rate exists, the log-linear learning curve is a straight line.  When the 

log-linear curve data approximate a straight line, laborers are achieving constant 

efficiency at the learning rate.   
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Figure 2: Log-Linear Learning Curve Example 

 J.R. Crawford repurposed Wright’s model during his time at Lockheed Martin, 

using the same equation and underlying theory, but defining the X and Y variables 

differently.  Crawford defined the X variable as the individual unit number and the Y 

variable as the individual unit cost instead of the cumulative value for both variables 

(ICEAA Module 7, 2013:31).  Identifying data by individual units rather than cumulative 

production enables easier detection of production units manufactured more or less 

efficient than others are, which can then be studied as to why.  Figure 3 shows an 

example of Crawford’s model with an 80% learning curve and first unit cost of $100 

thousand.  
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Figure 3: Example of Crawford's Learning Curve 

The same power form is evident in both Wright and Crawford’s models, but as Figure 4 

shows, predicting the unit cost (Crawford) results in a lower per unit cost prediction than 

the cumulative average unit cost (Wright) theory.  This is intuitive because Wright’s 

model presents data as average, which smooths the impact of any specific data point.  

While the advantages of observing the data in unit space are obvious, the cumulative 

average cost method is still more popular than the unit cost method (Badiru, 1992:176). 

 

Figure 4: Wright and Crawford 80% Curve Comparison 
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The learning curve theory is especially important to the aircraft industry because 

aircraft manufacturing is a high touch labor environment.  Henneberger and Kronemer 

(1993) identified three factors that contribute to the low-automation environment in this 

industry: (1) the aircraft industry produces a customized product, (2) the unit volume 

produced is extremely low compared to most manufacturing activities, and (3) the aircraft 

industry produces a complex product (26).  These three factors do not incentivize the 

aircraft industry to invest in laborsaving machinery, because a highly skilled workforce is 

more cost effective in an environment that demonstrates these traits; DoD aircraft 

manufacturing is no exception, and is probably more prone to these three factors than 

commercial aircraft manufacturing.  

Learning Curve Theory Evolution 

 Wright’s learning curve theory drastically influenced the manufacturing industry 

after World War II.  Numerous learning curve models have since been developed to more 

accurately represent what manufacturers uniquely observed taking place during 

production.  Figure 5 graphs the most well known models and illustrates the differences 

depending on what cumulative production unit number is being observed.  The five most 

well known models are: the log-linear model (Wright/Crawford), the plateau model, the 

Stanford-B model, the DeJong model, and the S-model (Yelle, 1979:304).  The following 

sections describe the distinctive qualities of each model type.  
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Figure 5: Comparison of Learning Curve Models on a Log Scale (Badiru, 1992) 

Plateau Model  

 Levy (1965) suggested Levy’s Adaptation Function, also known as the plateau 

model, and the main distinction of this model is the use of a constant to flatten (plateau) 

the learning curve as the number of units produced becomes large (Badiru, 1992:179).  

The idea behind this constant is that learning does not continue indefinitely, and as the 

number of units produced reaches a certain level, any change in the learning curve 

(decrease or increase) is ignored and the curve flattens. 
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Stanford-B Model  

 The Stanford Research Institute conducted a study (1956) on behalf of the DoD 

that led to the development of this model.  An important distinction in this model is 

adding a constant value between one and ten to adjust the production unit (X variable) 

value being estimated.  The constant value is equal to the number of units of prior 

experience before the first unit acceptance occurs.  If there are no prior equivalent units, 

the Stanford-B model reduces to the conventional Crawford model because the constant’s 

value in the equation is zero.  Prior aircraft production research has found the addition of 

this constant to account for the most relevant prior learning has reduced statistical error in 

a regression model (Badiru, 1992:178).   

DeJong Model 

 DeJong (1957) distinguished from the conventional log-linear model with the 

addition of an incompressibility factor between zero and one to account for the 

proportion of task activities between manual and machine operations.  An 

incompressibility factor of zero indicates entirely manual operations while an 

incompressibility factor of one indicates entirely machine.  The one also indicates that 

there is zero cost improvement (learning) possible (Badiru, 1992:179).  

S-Model 

 Carr (1946) is credited with developing the S-Curve model.  Figure 5 depicts the 

model in log space, but in unit space, the model takes the form of the letter “S,” making 

this model easy to recognize.  An important distinction in this model is that a gradual 

start up exists as production begins.  The production process and its laborers becoming 
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more efficient over time as more units are produced cause this transitory ramp-up state 

(Badiru, 1992:178).   

While this research study will not focus on applying the various learning curve 

models, it is important to point out that different models have been developed over time 

and are used in practice based on which model most accurately fits a manufacturer’s 

learning environment.  The five models just discussed are the five most popular models, 

but the list of learning models aforementioned is not exhaustive.  

Production Break and Lost Learning  

 As the learning curve theory has evolved, researchers and practitioners have 

investigated the impact to the learning rate, when other than constant production exists.  

George Anderlohr (1969) is credited with developing a model to determine the additional 

hours/costs that result from a break in production.  Anderlohr (1969) defined a production 

break as, “the time lapse between completion of a contract for the manufacture of certain 

units of equipment and the commencement of a follow-on order for identical units” (16).  

A break in production results in increased hours and costs, because the laborers are no 

longer performing their tasks on a constant repetitive basis, and the laborers become less 

efficient (have a loss of learning) during the production break timeframe (Anderlohr, 

1969:16-17).  

 Anderlohr’s method identified five factors that contribute to a loss of learning: 

production personnel learning, supervisory learning, continuity of production, 

improvement of special tooling, and improvement of methods.  Each factor was weighted 

based on the specific company and industry.  The amount of personnel and 
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manufacturing process that remains (or is lost) after the production break is estimated to 

develop a total percentage of learning lost.  The total learning lost during the production 

break is used to regress back up the learning curve before the production of the next lot 

begins.  Regressing back up the learning curve to account for the break will more 

accurately predict the total hours for the next lot given that re-learning must take place 

before the laborers will become as efficient as before the break (Anderlohr, 1969:16-17).   

 Studies have also discovered that lost learning can be a result of forgetting at 

times other than during a production break (which is considered scheduled forgetting).  

Two other instances when forgetting can occur are: 1) at random due to the inability to 

continue work (e.g. machine breakdowns), and 2) based on a natural process (e.g. aging 

workforce) (Badiru, 1995:780).  Badiru goes on to conclude that, “whenever interruption 

occurs in the learning process, it results in some forgetting.”  The amount of forgetting is 

a function of both the length of disruption and the initial performance level (Badiru, 

1995:780).   

Given that the initial performance level will depend on the individual laborer, the 

amount forgotten will also depend on the individual laborer.  A laboratory study 

conducted to study the effects of forgetting discovered three important findings regarding 

learning and forgetting.  First, laborers do not have insight into their own memory.  

Second, individual learning is highly correlated to the amount of time taken to complete 

the first production unit.  Finally, learning, forgetting, and relearning are not necessarily 

the same rate, but rather a function of individual skill levels and the initial learning 

(Bailey, 1989:340). 
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Lam et al. agree that some forgetting will occur whenever a production 

interruption occurs but postulate that forgetting initially occurs as a rapid decrease in 

performance that gradually plateaus (Lam et al., 2001:412).  Figure 6 illustrates this 

forgetting phenomenon.  

 

Figure 6: S-shaped Forgetting Curve (Lam et al., 2001) 

The rapid decrease and amount of time before plateauing depends on the number of 

successive units completed without disruption prior to the production interruption, as 

other research has suggested.  Total forgetting occurs only after sufficiently long 

(undefined) breaks in production.  As long as total forgetting has not occurred, Figure 7 

depicts the idea of learning, some forgetting, and relearning (Lam et al., 2001:414). 

 

Figure 7: Learning-Forgetting-Learning Curve Example (Lam et al., 2001) 
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 While this study will not focus on incorporating the ideas of lost learning and forgetting 

into any calculations, forgetting and relearning and the overall principle that learning 

does not continue at a constant rate for the life of production is a growing area of 

importance in the learning architecture.   

Additional Work Theory 

A similar circumstance to the production break theory, that has a similar result, is 

the idea of new learning, when manufacturing is interrupted with a major configuration 

change to the production unit.  When the unit being manufactured is changed, the 

laborers must adjust their processes to learn how to correctly produce the newly 

configured unit.  Historically, adjusting the learning curve to account for the impact due 

to configuration changes is referred to splicing or splitting the curve, although little 

research has been done in this area with empirical data.  The theory of splitting the curve 

provides rationale to split the curve between units of different configurations (pre- and 

post-configuration change) because the latest production unit usually provides the 

greatest estimate for future production units (Dahlhaus and Roj, 1967:16).  

One possible method to adjust the learning curve to account for the additional 

learning has been documented by the International Cost Estimating and Analysis 

Association (ICEAA), formally known as the Society of Cost Estimating and Analysis 

(SCEA).  This method adds the new learning curve (post-configuration change to the old 

learning curve, starting with the first unit after the configuration change was introduced 

(ICEAA Module 7, 2013:77), as shown in Equation 3.   
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𝑌 = 𝑎1𝑋𝑏1 +  𝑎2(𝑋 − 𝐿)𝑏2     (3) 

Where 
Y = the unit cost 
a1 = original T1 value 
a2 = new work T1 value 
x = current unit number 
L = last unit before addition of new work 
b1 = exponent for original learning curve slope 
b2 = exponent for new work learning curve slope 

 
Evolving this idea to identify the learning rate and cost impacts due to configuration 

changes is a basis for this research.  

 While numerous learning curve methods and theories have evolved from Wright’s 

discovery, the Air Force directs its cost analysts to use the unit curve and cumulative 

average formulations, both of which follow Wright’s original exponential learning curve 

model (AFCAH, 2007:4).  Both of these formulas ignore the important reasons to vary 

the traditional learning curve discussed in this section—different manufacturers 

sometimes observe learning that is demonstrated better by a model other than the log-

linear model, and adjustments to the learning rate may be necessary if other than constant 

production occurs.  This research will try to build upon existing models to identify the 

proper adjustment to the learning rate when a configuration change cuts into the 

production line.   

Summary 

Chapter II creates the foundation for the research by providing a basic historical 

overview of learning curve concepts for the past 80 years and identifying an apparent gap 

that this research will attempt to address.  Chapter III describes the methodology used in 
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this research study to understand the impact of configuration changes to the learning 

curve of DoD aircraft acquisition programs. 
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III.  Methodology 

Introduction 

The premise of this research is that while the DoD directs the use of Wright’s 

learning curve model (or Crawford’s application in unit theory) for cost estimating 

(AFCAH, 2007:8) as described in Chapter II, there are modern complications in 

production that need to be addressed to more accurately predict aircraft production 

hours/costs.  While Wright’s model arguably remains the most widely implemented 

learning curve theory today, Wright acknowledged the limitations of his model in his 

initial publication, and stated, “it should be recognized that the factors derived are based 

on the assumption that no major changes will be introduced during construction” 

(Wright, 1936:124).   

However, current cost estimators do not adjust Wright’s learning curve to account 

for the major configuration changes that come into the production line because the slope 

of the newly configured units is unknown.  Instead, as changes are introduced every unit 

is treated the same, i.e. keeping all units running down the same, constant slope.  The cost 

estimators account for the configuration changes in the learning curve analysis only after 

the contractor provides the actual hours/costs to the program office, which can be a 

considerable amount of time after the change came into production.  Developing a 

method to adjust the learning curve slope or estimate based on the impact of major 

configuration changes may lead to increased accuracy of cost estimates and greater 

ability in contract negotiations, which are both vital concerns during this constrained 

fiscal environment.   
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Data Collection 

The availability of data that meets the intent of this study determines the 

effectiveness of this research.  Prime contractor aircraft production data was collected 

from the aircraft program offices and the Air Force Life Cycle Management Center Cost 

Staff (AFLCMC/FZC) at Wright-Patterson Air Force base.  The production data was 

provided in touch labor hours and production costs and was detailed by production unit or 

production lot depending on the specific program.  Current DoD cost databases do not 

supply adequate data because the data required for this study is so specific, as will be 

described later. 

Research Design 

This study will use the traditional learning curve analysis steps as a guide to begin 

the research analysis (ICEAA Module 7, 2013:32):  

1. Collect and normalize data 

2. Scatter-plot data and fit a power trendline 

3. Transform into log space 

4. Plot data in log space 

5. Determine linear equation using regression 

6. Determine answers through applied learning curve equation 

Based on the research questions this study hopes to answer, steps two and four provide 

significant information that would be more difficult to discern otherwise.   

Creating a scatter-plot of the data provides initial insight into the trends and 

relationships that may exist in the data set (ICEAA Module 1, 2013:61).  A scatter-plot 
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analysis can also emphasize breaks between the data points and that a single power curve 

for the dataset may be inappropriate.  This phenomenon is referred to as a “pseudo 

learning curve”; a single power curve that is statistically significant but poorly fits the 

data (ICEAA Module 7, 2013:13).  Figure 8 depicts a pseudo learning curve example.  

The plotted data clearly shows that a single power curve may not represent the data as 

well as three separate power curve segments; units one through three, units four through 

seven, and units eight through ten.  It is visually evident that the single power curve 

represents a much flatter learning slope than the steeper learning that is apparent in the 

three segments when analyzed separately. 

 

Figure 8: Pseudo Learning Curve Example 

A focus of this research study is breaking a pseudo learning curve into the more 

appropriate multiple power curves to analyze a single data set properly.  

 Plotting the data in log space visually confirms that the analysis method is 

appropriate.  When plotted in log space, the data should approximate a line.  If the data 
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do not approximate a line, the analysis method for that data set may not be suitable 

(ICEAA Module 7, 2013:22).  It is not the intent of this research study to analyze 

alternative analysis methods, so this visual analysis will be used as a discriminator of 

which data segments to include in the analysis.    

Research Population 

 The previous section described where all of the data for this study was obtained.  

The initial data collection resulted in a portfolio of 50+ DoD aircraft production programs 

of varying platform types.  The data required for this study is so specific that the data for 

only four programs was available to analyze at the time this study was conducted.  The 

three limiting conditions the data had to satisfy to be included in this study were: 1.) At 

least one identified configuration change must come into the production line during 

production, 2.) All units must be produced on the same production line, and 3.) The 

program must be “substantially” into production. 

 Elaborating on the limiting conditions, this research seeks to isolate the impact 

due to a configuration change and to reduce the possibility of identifying an impact to the 

learning curve that is actually due to another factor.  Therefore, at least one configuration 

change must be introduced into the production line.  The program offices identified the 

configuration changes occurring in the data, which current DoD cost databases do not 

categorize or identify. 

Additionally, all units need to be produced on the same production line to allow 

analysis of a single production process.  Learning cannot be analyzed otherwise because 

different labor resources are used on separate lines and different production processes 
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may be used in separate locations, among other limitations.  Finally, the program must be 

substantially into production for this analysis because it is common for aircraft units late 

in the development and early in the production processes to be changed and for the 

production hours to fluctuate due to less efficient processes (i.e. pre-learning).  Early 

production configuration changes are normal in the DoD aircraft acquisition process and 

unstable learning is expected.  Until a stable learning rate is achieved, this analysis cannot 

isolate the impact due to a configuration change.  For the purposes of this analysis, 

substantially into production is defined as those units considered by the program office to 

be representative of stable production and exclude any units identified as development or 

pre-production.   

After excluding any programs that did not meet the research conditions, only four 

data sets remained in the analysis.  All data provided in lot groupings were excluded 

because no detail was available to confirm if a configuration change occurred regardless 

of what the scatter-plot visually suggested.   

The unit theory data included in this analysis includes one joint service and three 

Air Force aircraft programs.  All the data used in the study are provided in hours so the 

data do not need to be standardized.  Due to the proprietary nature of the production data, 

the program names are not disclosed and will be identified as Programs A, B, C, and D.  

Only a subset of the joint service program (Program D) labor hour data can be analyzed 

because only one portion of the aircraft production is completed on a single production 

line.     

The scope of this research project initially included all aircraft classes.  After 

scrubbing the available data, only three classes of aircraft are represented in this study: 
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Unmanned Air Vehicle, Cargo, and Fighter aircraft.  Table 1 summarizes the sample 

sizes for each program included in this study: 

Table 1: Research Population Program Sample Sizes 

Program Sample Size 

Program A 84 

Program B 27 

Program C 176 

Program D 115 

 

Research Questions and Hypothesis 

This research will study two main research questions to address the implications 

when a configuration change occurs during production: 

1. Is there an impact to the learning curve slope when a configuration change is 

introduced to the production line?  Specifically: 

a) What is the learning curve slope for each new configuration;  

b) Are the production segments for each configuration significantly 

different; and  

c) What is the difference between the hours predicted based on the prior 

configuration and actual hours for each segment? 

2. How many units of the newly configured aircraft are produced before the 

contractor regains the stable learning rate? 

The first research question leads to a single testable hypothesis: 
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Hypothesis 1: Is the mean amount of labor hours prior to a configuration change 

the same as the mean amount of labor hours subsequent to a production change? 

H0: Mean labor hours prior to configuration change = Mean labor hours post configuration change  
Ha: Mean labor hours prior to configuration change ≠ Mean labor hours post configuration change 
 

If the analysis results fail to reject the null hypothesis, this would indicate the data points 

come from the same population and a configuration change did not have a significant 

impact to the learning during production.  If the analysis rejects the null hypothesis, this 

would indicate the opposite, the data points representing different configurations come 

from different populations and that a configuration change did have a significant impact 

to the learning during production.  If the results support rejecting the null hypothesis, 

using the prior learning curve equation is inappropriate to predict the hours of the new 

configuration because the units come from different populations.  The second research 

question does not require a hypothesis test. 

Variables and Statistical Tests 

For this research study, the total touch labor hours required for a single aircraft 

unit’s production is the only dependent variable.  The learning curve slope contributes to 

the predicted and actual required production hours.  The independent variable is a 

configuration change occurring during the aircraft production.  

The hypothesis involves comparing the mean values pre- and post-configuration 

change to ascertain if the means are statistically similar.  Prior to testing the means, 

assumptions about the data must be tested to determine if parametric or nonparametric 

testing is more appropriate.  Parametric tests make inferences about the underlying 

population parameters, whereas nonparametric tests do not depend on the underlying 
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distribution of the population (McClave, Benson, and Sincich, 2014:15-3).  Prior learning 

curve research has found parametric estimating predicts with the smallest range and least 

dispersion, but has the most bias in the estimated parameters.  Nonparametric estimating 

has been found as the opposite, the least biased estimated slope and first unit cost, but a 

greater predicted range with more dispersion (Avinger, 1987:41).   

 A popular parametric analysis test used to compare mean values is the Student’s t-

statistic.  If the results of this t-test are significant, the results indicate that the true mean 

between the compared values is different (McClave, Benson, and Sincich, 2014:380).  

The sample populations must meet specific assumptions to use the t-test: the samples 

must be randomly selected from the population; the samples must be selected 

independently of each other; and the data must be normally distributed and have equal 

variances (McClave, Benson, and Sincich, 2014:423-424). 

   If the underlying population assumption of normality cannot be met, the 

comparable nonparametric tests are the Kruskal-Wallis Test (comparing three or more 

populations), the Wilcoxon Rank Sum Test, and the Mann-Whitney U Test (both 

comparing two populations).  These three nonparametric tests compare the medians of 

the population samples instead of the mean values because a normal distribution is not 

assumed.  The sample data is pooled and ranked as if it came from the same population 

and if the underlying populations are the same, the ranks should be randomly mixed 

between the samples.  If the underlying populations are different, one sample will have 

more of the larger ranked values.  Results that support rejecting the null hypothesis 

indicate that the true median between the compared populations is different (McClave, 

Benson, and Sincich, 2014:15-9).   
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Nonparametric tests make no assumptions about the distribution form of the data.  

The only conditions required for the aforementioned nonparametric tests are that the 

samples are independent and randomly selected and that the distributions are continuous.  

The only additional requirement for the Kruskal-Wallis test is that each sample includes 

at least five data points (McClave, Benson, and Sincich, 2014:15-28).   

The Wilcoxon test allows a test statistic z-value to be computed and compared to 

a z-score as with a normal t-test if both sample sizes are greater than ten (McClave, 

Benson, and Sincich, 2014:15-12).  The Wilcoxon test was conducted when both sample 

sizes were “larger” (greater than ten) and at least one sample size was greater than 30.  

The Mann-Whitney test was conducted otherwise (i.e., for “smaller” sample sizes, neither 

greater than 30).  The Mann-Whitney and Wilcoxon tests are considered statistically 

equivalent (McClave, Benson, and Sincich, 2014:15-11), so either test will yield the same 

results.   

 This research study will evaluate statistical tests at an alpha value (α) of 0.05.  

This significance level indicates results are presented with 95% confidence and only a 

5% chance exists that the null hypothesis is rejected in favor of the alternative hypothesis 

when the null hypothesis is in fact true (McClave, Benson, and Sincich, 2014:361).  In 

this analysis, rejecting the null hypothesis provides 95% confidence that the means 

between the populations are different.  If nonparametric analysis is more appropriate for 

the study, a z-value of 1.96 will be used because it is the corresponding z-value that 

provides 95% confidence.     
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Random Sample 

 A random sample is defined as “a sample selected from the population in such a 

way that every different sample of size n has an equal chance of selection (McClave, 

Benson, and Sincich, 2014:15).  The samples in this study are random because every 

DoD production aircraft program had an equal chance of being selected.   

 Independence 

 Past research of DoD programs has concluded that independence between DoD 

programs exists if legislation and regulation would affect cost performance similarly for 

each program and that a multitude of personnel manage the programs and contracts 

(Searle, 1997:58-59).  Given that all DoD aircraft programs fall under the same 

regulations and legislation, that support personnel with varying experience manage every 

program, and training, the assumption of independence of the populations is met.     

 Normal Distribution 

 The objective assessment of normality will be determined through the Shapiro-

Wilk test.  The null hypothesis of this normality test is that the data comes from a normal 

distribution (Searle, 1997:66).  If the test p-value is less than 0.05, the null hypothesis is 

rejected in favor of the alternative, that the population data is not normally distributed.  

As summarized by Tracht, past research into learning has assumed normality because a 

normal distribution was frequently observed in industry and because of the feasible range 

man-hours can assume (Tracht, 1988: 23).  However, an objective determination is used 

in this study to statistically support any findings.  
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Equal Variance  

 The assumption of equal variance will be tested by calculating the variance value 

for each sample and dividing the largest variance by the smallest variance.  A rule of 

thumb states if the resulting value is less than three, the assumption of constant variance 

is probably met (Ford, n.d.).   

Analysis Methods 

After applying the statistical methods described in the prior section and 

determining whether parametric or nonparametric testing is more appropriate, the 

analysis will progress to the research hypothesis testing.  The data will be split into 

separate segments at each identified configuration change (which should also be evident 

by an increase in the labor hours).  The appropriate statistical test(s) will identify if the 

segments are statistically similar based on the mean or median labor hour values.   

Using the touch labor hours, the learning rate before an identified configuration 

change and the learning rate after the change will be calculated to address the remaining 

areas of the first research question.  Both calculations will use Crawford’s equation 

 𝑦 = 𝑎𝑥𝑏, which Chapter II detailed; because the data is available in units, a unit analysis 

is appropriate.  In addition, to avoid the smoothing effect and the obfuscation of unit 

variation a cumulative unit curve can create, the unit learning curve method will provide 

the most explanatory results of the two methods for the intent of this study (ICEAA 

Module 7, 2013:14).   

The slope will be calculated each time an identified configuration change occurs 

and not at other instances, even if a pattern change is evident in the scatter-plot of the 
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data.  The learning curve equation of a segment will forecast the touch labor requirements 

of the successive production segment.  The forecasted hours of an identified 

configuration change will be compared to the actual hours of the same configuration to 

calculate the difference and the percentage difference.  The results will be used to 

develop a Cost Estimating Relationship (CER) or factor through bivariate regression 

analysis if feasible. 

To answer the second research question, an analysis will determine the number of 

aircraft produced after a configuration change until the prime contractor was able to 

return to a stable learning rate.  This will be accomplished by removing one production 

unit at a time (in sequential order beginning with the first unit of the segment) and 

calculating the learning curve slope of the remaining units until the stable rate of the prior 

segment is achieved.  An overall commonality is not expected because every program, 

every contractor, and the associated production process are different.  Instead, the results 

are informational and may support contract negotiation efforts with more insight into 

post-configuration change production.    

Conclusion 

This chapter explained the methodology used in this study.  If the analysis results 

indicate that a configuration change affects the learning curve rate, a comparison between 

the impacts may enable the researcher to develop a factor to modify learning curves when 

a configuration change occurs.  This factor could provide DoD cost estimators with 

another tool to account for the ever changing environment that is DoD acquisition.  

Chapter IV will walk through the results of the analysis described in this chapter.  
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IV.  Analysis and Results 

Introduction 

This chapter presents the results of the tests and analysis described in Chapter III.  

Analysis of the results attempts to answer the research questions previously outlined: is 

there an impact to the learning curve slope when a configuration change is introduced to 

the production line?  Specifically: what is the learning curve slope for each new 

configuration; are the production segments for each configuration significantly different; 

and what is the difference between the hours predicted based on the prior configuration 

and actual hours for each segment?  In addition, how many units of the newly configured 

aircraft are produced before the contractor regains the stable learning rate?  The results of 

any statistical tests as well as graphical analysis are presented herein. 

Normality and Equal Variance  

Prior to hypothesis testing, normality and equal variance tests are conducted to 

determine the appropriate hypothesis testing method between parametric and 

nonparametric analysis.   

The statistical analysis software, JMP 11.0, was used to calculate the Shapiro-

Wilk test values in this study.  Table 2 summarizes the Shapiro-Wilk test results for the 

four programs.  Small p-values (smaller than 0.05) reject the null hypothesis that the 

underlying population from which the samples are drawn is normally distributed. 



35 

 

Table 2: Shapiro-Wilk Test of Normality Summary 

Program Test Statistic Value P-Value 

Program A 0.939002 0.0006 

Program B 0.929877 0.0686 

Program C 0.971010 0.0017 

Program D 0.888473 <0.0001 

 

Three of the four programs have a p-value less than 0.05, concluding the data is not 

normally distributed and parametric analysis is inappropriate.  Given that only one of the 

four programs is normally distributed, nonparametric testing is conducted on all four 

programs for consistency.  Nonparametric testing is more appropriate for this study and 

none of the tests outlined in Chapter III require equal variance, so meeting that 

assumption is ignored.  The hypothesis also changes to comparing medians as opposed to 

means:  

Hypothesis 1: Is the median amount of labor hours prior to a configuration change 

the same as the median amount of labor hours subsequent to a production change? 

H0: Median labor hours prior to configuration change = Median labor hours post configuration change  
Ha: Median labor hours prior to configuration change ≠ Median labor hours post configuration change 

Visual Analysis  

 As with any learning curve analysis, this study begins with, and is heavily 

supported by, visual analysis using scatter-plots.  Following the traditional learning curve 

analysis steps, the analysis began with plotting the data for each program in unit space.  
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The scatter-plots include only the units identified as when the contractor was 

substantially into production (as previously defined).  The red markers annotate the 

configuration changes introduced during production on every chart presented.  The 

configuration changes visually demonstrate an impact to the learning curve for each 

program and break the single pseudo trendline into separate learning curve segments.   

The original scatter-plots are then recreated showing the learning curve segments 

annotated by different colored data points to visually represent the segments that will be 

used in the remainder of the analysis as well as the individual regression equations for 

each segmented trendline.  The final visual graphs used in the preliminary analysis are 

scatter-plots of the data in log space.  If the data points in log space do not approximate a 

line, the analysis method should be reconsidered (ICEAA Module 7, 2013:22).  

Considering different learning curve methods and models is beyond the intent of this 

research study.  Any data segments considered inappropriate under this analysis method 

based on the log space plots will be excluded from the remainder of the analysis.  The 

following sections provide the visual analysis results for each program.   

Program A  

 Figure 9 shows the initial scatter-plot of the units for Program A.  Overall, the 

data is consistently clustered around the power trendline throughout production.  The 

single red marker indicates the only configuration change identified by the program 

office for Program A.  The contractor incorporated several configuration changes at once, 

beginning with this single unit.  As intuitively expected, the first unit with the new 

configuration shows an increase in the production labor hours.  The scatter-plot shows the 
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contractor resumed learning after the initial introduction of the configuration change and 

the required touch labor hours decrease as more units are produced.  Visually, we can see 

the learning is at a faster rate (steeper) than the units prior to the configuration change 

until the units approach the trendline (the contractor’s stable learning rate) and the 

learning flattens again.   

 

Figure 9: Program A Scatter-Plot (All Units) 

Figure 10 shows the recreated scatter-plot for Program A.  The units prior to the 

configuration change are the blue markers (Configuration A) and the units after the 

change are the maroon markers (Configuration B).  The learning curve equations for each 

segment are shown and individually the R2 values have decreased for each segment, but 

both segments still each have trendlines that appear to fit the data very well.  
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Figure 10: Program A Segmented Scatter-Plot (All Units) 

Figure 11 shows the segmented data points for Program A in log space.  Both segments 

appear to approximate a line, so both segments will be included in the next section of 

analysis.    

 

Figure 11: Program A Segmented Scatter Plot in Log Space (All Units) 
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Program B  

 Figure 12 shows the initial scatter-plot of the units for Program B.  The two red 

markers represent the two configuration changes identified by the program office for 

Program B.  The single trendline throughout all of the data points does not fit any of the 

data well, and is representative of the pseudo learning curve phenomenon previously 

discussed.  Without signifying anything on the graph, three distinct segments are visually 

apparent, indicating a single trendline throughout the data is inappropriate.  As intuitively 

expected, the first unit with the new configuration shows an increase in the production 

labor hours.  The scatter-plot shows the contractor resumed learning after the initial 

introduction of the configuration change and the required touch labor hours decrease as 

more units are produced.  Counter-intuitively, the first unit of the second configuration 

change shows a decrease in production labor hours from the previous segment.  However, 

because the total touch labor hours for each unit are less than required for any prior unit 

in the program, the new configuration may simply be less complicated (requiring less 

labor) or a more efficient production process may have been created.   

 

Figure 12: Program B Scatter-Plot (All Units) 
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Figure 13 shows the recreated scatter-plot for Program B.  The units prior to the 

configuration changes are the blue markers (Configuration A), the units after the first 

change are the maroon markers (Configuration B), and the units after the second change 

are the green markers (Configuration C).  The learning curve equations for each segment 

are shown and individually the R2 values have increased for Configurations A and B and 

the segmented trendlines appear to fit the data better than the initial single trendline.  

However, the R2 value has decreased for Configuration C and the data does not appear to 

follow a traditional power curve form.   

 

Figure 13: Program B Segmented Scatter Plot (All Units) 

Figure 14 shows the segmented data points for Program B in log space.  The first and 

second segments appear to approximate a line, so both segments will be included in the 

next section of analysis.  The third segment clearly does not approximate a line, 

indicating the analysis method outlined in this study is not appropriate for the third data 

segment, so the Configuration C segment will be removed for the remainder of the 

study’s analysis. 
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Figure 14: Program B Segmented Scatter Plot in Log Space (All Units) 

Program C 

  Figure 15 shows the initial scatter-plot of the units for Program C.  The 15 

red markers represent the 15 configuration changes identified by the program office for 

Program C.  The configuration change markers and the impact on the production touch 

labor hours per unit are sporadic throughout the data points, with no clear discernable 

patterns due to configuration changes that were seen in the scatter-plots for Programs A 

and B.   

 

Figure 15: Program C Scatter-Plot (All Units) 
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Figure 16 shows the re-created scatter-plot for Program C.  The researcher attempted to 

segment the data for Program C to try to identify any apparent trend, which was not 

discovered.  The blue markers indicate four data point segments that best conform to a 

traditional power curve and visually stand out as possible segments of units that are 

benefitting from the contractor learning in the production process.  The green segments 

show “un”-learning – overall, the hours required for each subsequent unit are increasing 

until the next blue segment begins.  Because the green segments do not conform to a 

power curve form, if the log space plot indicates the analysis model of this study is 

appropriate to model the data points, additional steps will be required to analyze this data 

set.   

 

Figure 16: Program C Segmented Scatter-Plot (All Units) 

Figure 17 shows the data points for Program C in log space.  None of the data appears to 

approximate a line, indicating the analysis method outlined in this study is not 

appropriate, so Program C will be removed for the remainder of the study’s analysis.  

Possible reasoning for the sporadic behavior of Program C’s data will be explored in 

Chapter V.   
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Figure 17: Program C Scatter-Plot in Log Space (All Units) 

Program D – Final Assembly  

Figure 18 shows the initial scatter-plot of the units for Program D.  The initial 

data of Program D is split between three variants because this program is produced in 

three different modifications.  Only the final assembly is conducted on the same 

production line, so only the final assembly learning can be analyzed to meet the intent of 

this research study even though the data trend at the final assembly level is very similar to 

the data trend of the total touch labor hours per unit.  These variants are not the 

configurations in which the data will be analyzed.   

The five red markers indicate the five configuration changes identified by the 

researcher to segment the data.  Variant B always requires more touch labor hours than 

Variant A and Variant C always requires more touch labor hours than Variant B.  The 

segments were chosen based on when Variants B and C were introduced into the final 

assembly production line.  Towards the end of production, Variants B and C together 
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were overwhelmingly separated from Variant A, so two separate segments were 

identified to best fit the data and not establish a pseudo learning curve through the center 

of all the data points.   

 

Figure 18: Program D Scatter-Plot (All Units) 

Figure 19 shows the re-created scatter-plot for Program D and better illustrates the 

naturally occurring segments present in the data.  The five points identified as 

configuration changes form six data segments, signified in the figure.     

 

 

Figure 19: Program D Segmented Scatter-Plot (All Units) 
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Figure 20 shows the segmented data points for Program D in log space.  Each segment 

appears to approximate a line and will remain in the analysis.  

 

Figure 20: Program D Segmented Scatter-Plot in Log Space (All Units) 

Statistical Analysis 

 The next phase of analysis involves the nonparametric statistical analysis to 

determine if the segments remaining in the analysis are statistically similar.  Table 3 

includes the slope calculations for each program for each segment identified.  

Configuration A is always the initial configuration, prior to any changes.  Based on this 

summary, the slope never remained the same after a configuration change.   

Table 3: Segment Learning Curve Slope Values 
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The configuration changes appear to have an impact to the slope, but statistical testing is 

required to understand if the change in slope may be a contributing factor causing the 

segments to be statistically different.  The Wilcoxon Rank Sum Test was conducted on 

Program A because it is most appropriate to compare two samples when both sample 

sizes are large.  The Mann-Whitney U Test was conducted on Program B because it is 

most appropriate to compare two samples when the sample sizes are not large (both less 

than 30).  The Kruskal Wallis Test was first conducted on Program D because it is most 

appropriate to compare three or more samples. 

 The Kruskal Wallis Test for Program D calculated a K value of 98.938 and a 

critical value of 11.070.  Because the critical value is less than the K value, the null 

hypothesis that the medians for all of the segments are statistically similar is rejected.  

The Kruskal Wallis test results reveal that at least one of the segments is statistically 

different, but does not indicate which segment(s).  A combination of the Wilcoxon Rank 

Sum Test and Mann-Whitney U Test was also conducted on successive pairs of segments 

to determine which segment(s) were statistically different from the others for Program D.  

Successive comparison is the most appropriate because the intent of this study is to 

determine if a single configuration change influences the following production units.  If 

there were another configuration change introduced in subsequent learning curve 

segments, comparing the first to the last would be inappropriate because more than one 

configuration change is affecting the unit touch labor hours, and the impact from one to 

the next cannot be isolated.  The Mann-Whitney test was used when the configuration 

pairs both had small samples (less than 30) and the Wilcoxon test was used when at least 

one sample size was greater than 30. 
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Program A Results 

   The Wilcoxon Rank sum test was performed on Program A because 

Configuration A has a sample size of 32 and Configuration B has a sample size of 53 

(both large).  With large sample sizes, z-values can be used to analyze the results.  At a 

95% confidence level, the corresponding z-score is 1.96.  The test statistic z-value for 

Program A was 7.157.  Because the absolute value of the test statistic is greater than 1.96, 

the null hypothesis is rejected, signifying the medians between the two samples are 

statistically different.      

Program B Results 

 The original data for Program B included three configurations.  The Kruskal 

Wallis test was performed to determine if at least one of the sample medians was 

statistically different from the others.  The Kruskal Wallis Test for Program B calculated 

a K value of 16.286 and a critical value of 5.991.  The null hypothesis that the medians 

for all of the segments are statistically similar is rejected because the critical value is less 

than the K value.   

 Through prior analysis, the third configuration, Configuration C has been 

excluded, but the Mann-Whitney U Test was still performed on both pairs of segments to 

identify which segment median(s) are statistically different.  For the first pair, 

Configurations A and B, the calculated U statistic value is 39.  The table critical value for 

these sample sizes (six and thirteen, respectively) is 16.  The results fail to reject the null 

hypothesis because the U statistic is greater than the critical value, signifying the median 

values for these configuration segments are statistically similar.    
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For the second pair, Configurations B and C, the calculated U statistic value is 

zero.  The table critical value for these sample sizes (thirteen and eight, respectively) is 

24.  Because the U statistic is less than the critical value, the null hypothesis is rejected; 

signifying the median values for these configuration segments is statistically different.  

Due to the reasons stated previously in the analysis, Configuration C, although 

statistically different from Configuration B, is not appropriately modeled through the 

analysis in this study.  

Program D Results 

Table 4 summarizes the sample sizes for each segment in Program D. 

Table 4: Program D Segment Sample Size Summary 

Segment Sample size (n) 

Configuration A 8 

Configuration B 24 

Configuration C 17 

Configuration D 14 

Configuration E 33 

Configuration F 19 

  

The Mann-Whitney test was performed on the first three segment pairs (between 

Configurations A, B, and C) because all there sample sizes are less than 30.  The 

Wilcoxon test was performed on the last two segment pairs (between Configurations D, 

E, and F) because Configuration E has a sample size of greater than 30 and is the 

configuration compared with both Configurations D and F.  Table 5 summarizes the test 

results.   
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Table 5: Program D Mann-Whitney and Wilcoxon Test Results Summary 

Segment Pairs 
Mann-Whitney 

U-Statistic 
Mann-Whitney 
Critical Value 

Wilcoxon Test 
Statistic z-value 

95% Confidence 
Level comparison 

z-score Decision 
A and B 29 50 - - Reject H0 
B and C 46 129 - - Reject H0 
C and D 31 67 - - Reject H0 
D and E - - 5.03 1.96 Reject H0 
E and F - - 5.81 1.96 Reject H0 

Mann-Whitney Analysis: Reject H0 when U-statistic < Critical Value 
Wilcoxon Analysis: Reject H0 when Test Statistic z-value > Confidence level z-score  
 

The results in this table indicate that every segment is statistically different from the 

adjacent segment for Program D. 

Investigative Questions Answered 

 The previous section provided evidence that in nearly every case involved in this 

study, the segmented data are statistically different when comparing adjacent segments, 

which addresses that issue in the first research question.  There is a change to the learning 

curve slope each time a configuration change is introduced, and in every case analyzed 

except one, the median labor hours (which are partially a function of the learning curve 

slope) for the different configurations is statistically different.  These findings statistically 

support that using the prior learning curve equation is inappropriate to predict the hours 

of the new configuration because the units come from different populations. 

 Further addressing the first set of questions, the learning curve equation for each 

segment is used to predict the touch labor hours for each unit in the following segment.  

The total predicted hours for each segment are compared to the total actual hours of the 

segment and the results are shown as a difference in hours as well as a percent difference 
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for comparison between the programs.  A negative value indicates the estimate was lower 

than the actuals.  Table 6 details the results of the predicted and actual hour comparisons.  

Table 6: Learning Curve Equation Prediction vs. Actuals Summary 

 

Given that this portion of the analysis only includes three programs, and two of the 

programs only compare two segments, there are too few data points to develop any 

meaningful CER or factor.  However, the results are still impactful because for each of 

the seven segment comparisons, no fewer than 20 thousand hours was the difference 

between the predicted and actuals, which equates to millions of dollars per segment 

misestimated (generally underestimated) in a cost estimate.  Underestimation requires the 

program office to find dollars not currently in its budget and overestimation temporarily 

ties up funding that can be used for other purposes.   

In reality, a contractor will submit a tech-refresh proposal to the program office to 

account for the configuration change, but will estimate the unit costs based on an 

extrapolation of its stable learning curve because the new slope is unknown.  In every 

Predicted Hours Actual Hours Difference % Difference 
A predicting B 11,336,756.40  11,371,252.00 (34,495.60)   -0.30%

Predicted Hours Actual Hours Difference % Difference 
A predicting B* 229,114.62        295,348.35       (66,233.73)   -22.43%

Predicted Hours Actual Hours Difference % Difference 
A predicting B 1,014,525.48    986,331.30       28,194.18     2.86%
B predicting C 490,909.41        531,988.54       (41,079.13)   -7.72%
C predicting D 339,726.00        368,921.32       (29,195.31)   -7.91%
D predicting E 678,070.58        698,789.63       (20,719.06)   -2.96%
D predicting F 397,530.17        542,429.97       (144,899.80) -26.71%

Program A

Program B

Program D

*Configuration B not considered a statistically significant change from 
configuration A
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program analyzed in this study, the learning curve slope becomes much steeper after the 

configuration change (when compared to the initial stable slope), and a extrapolation of 

the stable curve will create a higher per unit cost than the contractor would actually 

experience with the steeper learning curve.  This phenomenon is explored in the next 

section, which analyzes Program A to answer the second research question of how many 

production units are manufactured before the contractor returns to its stable learning rate.  

 Program A was selected for analysis in answering the second research question 

because Program A has a large sample size in total and in each segment separately.  In 

addition, only one configuration change came into the production line, so this program 

provides the simplest situation to analyze.  The stable slope for Program A is 63.26% as 

determined by the units in Configuration A (units 41 to 71).  Table 7 summarizes the 

slopes for Configuration B beginning with units 72 to 124 and removing one unit at a 

time from the beginning of the segment until the stable slope was reestablished.  

Table 7: Program A Stable Slope Analysis Summary 

 

First Unit Slope Units to Stabilize 
72 49.84%
73 50.69% 1
74 51.34% 2
75 51.95% 3
76 52.48% 4
77 52.85% 5
78 52.83% 6
79 52.81% 7
80 53.21% 8
81 53.44% 9
82 53.80% 10
83 54.36% 11
84 54.85% 12
85 55.25% 13
86 56.33% 14
87 57.39% 15
88 59.18% 16
89 60.52% 17
90 62.03% 18
91 63.60% 19
92 64.36%
93 64.30%
94 64.52%
95 63.51%
96 62.06%
97 60.54%
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The stable learning rate is achieved with the production of unit 91, which are 19 

units after the configuration change came into the production line.  While every program 

will stabilize at different production rates, the important point in this analysis is that after 

the configuration change is introduced, the contractor learns much quicker on the units 

after the configuration change than the stable flatter learning rate pre-change.  The units 

immediately following the stabilized rate (92 to 97) are included in the table to show that 

the contractor does not continue to learn for all units after the stabilized rate is achieved, 

rather the contractor’s learning rate stays around the stabilized rate.  While this analysis is 

for only one program and cannot be generalized for all programs, the prior analysis did 

show that for each program, the contractor learned at a much steeper rate following the 

configuration change.  These results do provide evidence to support a position other than 

the contractor extrapolating the prior stable learning curve in a tech-refresh proposal 

before a configuration change is introduced.  

Split Learning Curves 

 Chapter II introduced the idea of split learning curves and a possible formula to 

add the new learning curve slope of the units post configuration change to the learning 

curve slope of the prior segment to create a single learning curve equation.  The formula 

was caveated with the statement that the equation is best demonstrated in a situation with 

low production, like satellites or ship building.  The data available for this study was not 

in a form to investigate the usefulness of the equation in a situation with greater amounts 

of production like aircraft manufacturing.  The delta in hours attributed to the 
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configuration change itself is required for the equation, which was not available during 

this analysis. 

Summary 

The purpose of this chapter was to provide the analytical results based on the 

methodology described in Chapter III.  While there were not enough programs with data 

to include in this analysis to generalize results or create an adjustment factor, the results 

show there is possibly a significant impact to the learning curve slope.  The slope 

changing for each configuration, the statistical difference in the segments, which are 

partially a function of the slope, and the difference in estimated and actual hours may 

support that theory.  Chapter V will summarize the significance of this research study as 

well as recommendations based on this research and recommendations for future 

research. 
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V.  Conclusions and Recommendations 

Introduction 

This research study started with two main research questions.  First, to determine 

if a configuration change brought into an aircraft production line had a significant impact 

on the production learning curve slope.  Specifically: what is the learning curve slope for 

each new configuration; are the production segments for each configuration significantly 

different; what is the difference between the predicted and actual hours for each segment?  

Second, to determine after a configuration change is introduced, how many production 

units are manufactured before the contractor’s stable learning rate is again achieved.  

Hypothesis testing was used to assess the statistical differences in the median labor hour 

values pre- and post-configuration change to determine the presence of a statistically 

significant impact possibly due to an unstable learning curve.  Data point analysis was 

used to address the second research question.  The raw results from the hypothesis testing 

and analysis are shown in Chapter IV.  This Chapter V addresses the impacts of the 

findings and any conclusions that can be drawn as well as the research limitations, 

significance, and recommendations for future research.   

Conclusions of Research 

The hypothesis testing indicated a statistically significant difference in the median 

production touch labor hours in the pre-configuration change and post-configuration 

change aircraft for every pair of data segments analyzed, except for one.  Comparing the 

median values may equate to a statistically significant difference in the learning curve 

slopes for those data segments because the impact to the learning curve slope is evaluated 
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through the touch labor hours of the data points, as they are partially a function of the 

slope value.  

The data point analysis to address the stable learning curve research question 

produced interesting results.  The analysis did show a pattern that post-configuration 

change, the contractor initially learns at a much faster rate and the learning rate decreases 

with each subsequent unit until the stable learning rate is again achieved.  The learning 

rate did appear to stabilize at this point and did not continue to decrease.   

While data for too few programs was available at the time of this research study 

to generalize the results or develop an adjustment factor, the results of this study may 

imply two things.  First, that a majority of the time there is an impact to the learning 

curve slope whenever a configuration change is introduced during production.  Second, 

that the contractor is able to learn to incorporate the change much more quickly than its 

stable learning rate for the entire aircraft.  However, unless more data is studied, these 

results cannot be generalized in any way.   

Significance of Research 

 The results of this research indicate there may be a significant impact to the 

learning curve slope when a configuration change is introduced during production, even 

if the program is substantially into production, as were the programs included in this 

analysis.  While the results cannot be generalized, the findings suggest more research in 

this area is important for two reasons.  First, if more programs are analyzed, more data 

points may lead to the development of a CER or factor to adjust a stable learning curve, 

which would be a useful tool for cost estimators given the ever changing acquisition 
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environment.  Second, because the learning curve slope is such a crucial factor in 

production contract negotiations, empirical evidence strengthens the DoD’s position of 

what the contractor’s expected learning curve should be – which this study has not found 

to be an extrapolation of the contractor’s stable learning curve.   

An initial estimate that does not anticipate any configuration changes will 

underestimate unit production hours or costs required for the newly configured unit.  If 

the DoD negotiates a contract based on an extrapolation of the contractor’s stable rate, 

these results provide evidence that the stable rate will over estimate the production 

requirements; this analysis showed the contractor learns at a steeper rate after a 

configuration change.  The initial underestimating, coupled with the contractor’s 

overestimation, will result in the program office requesting millions of dollars, possibly 

in excess, per configuration change. 

 Learning curve theory advises the use of the most recent or most representative 

production articles to predict the follow on articles.  While this is intuitive and proven to 

result in better estimates even in this study, program offices cannot disregard the prior 

units.  If program offices track the configuration change information and the resulting 

impacts, the DoD may be in a better position to estimate costs and negotiate production 

contracts.  

Assumptions and Limitations 

 The overarching methodology assumptions may lead to different results if a 

different methodology was chosen.  This study was designed to evaluate the impact to the 

learning curve only when a configuration change was identified.  If the data points were 
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grouped or segmented based on a different methodology, different results may be 

uncovered.  The methodology also depends on the program office accurately and fully 

identifying configuration changes among the data set.   

The overarching limitation in this research study was the availability of data at the 

necessary level to meet the intent of the study.  With so few programs available to 

analyze at the time this study was conducted, no generalizations can be made regardless 

of any statistical significance.  A limitation to the analysis was not having insight into the 

contractor’s production process changes that may also attribute to the change in 

production hours.  Intuitively, a configuration change could result in a production process 

change at the same time, which may affect the data point values.  Two subject matter 

experts believe technology cycle and production process changes could be the reason the 

configuration changes did not appear to cause the only change to the learning for 

Program C.     

Recommendations for Future Research 

There are five potential areas for future research that should be considered.  First, 

conducting the same analysis on more programs would provide additional empirical 

evidence of what happens to a learning curve when a configuration change is introduced 

into production, which the benefits of have already been explained.  Second, an extension 

of conducting the analysis on more programs is to analyze more aircraft class types 

(multiple of each type when possible) and to obtain data about the size and type of the 

configuration change.  Figure 21 depicts a possible research model with moderating 

effects.   
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Figure 21: Possible Future Research Model with Moderating Effects 

The inclusion of these moderating effects (and other identifiable effects) may allow the 

development of a statistical model for program office use.  Third, including an 

incorporation of any learning curve models and elements discussed in Chapter II may 

better analyze the impact of different factors to the learning curve simultaneously.  

Fourth, investigation into contractor production process changes in preparation for or 

conjunction with configuration changes (Program C) could develop a way to model these 

situations.  Finally, studying the impact to the learning curve slope of missiles rather than 

aircraft is a possible future area of research worth exploring.  The DoD procures many 

more missiles than aircraft, so the sample sizes will be much larger if the data is 

attainable, which may lead to more conclusive and generalizable results.  
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